音乐粉 > 音乐教程    > 乐理知识 > 194-音律的计算方法

194-音律的计算方法

  • 人气:1268
  • 收藏:0
  • 发布时间:2021-11-28 15:50:28
音律的计算方法有利于演奏、演唱技能的发挥。尤其是从事音乐研究而又不擅长音律计算的人,若能掌握音律计算方法,于研究无疑是大有俾益的。 (一)绝对音高与频率的换算 绝对音高有两种表示方法,一种是音分表示法,另一种是音名表示法。在考古研究中,已如前文所述,音名是不用音乐上通用的大字组、小字组之区别的,而是仅用大字的0、1、2、3……来表示。起始音是C0,它乃是0音分,一组为1200音分。例如,A4便是5700音分。这是因为C0-C4为4800音分,C4-A4为900音分,二者之和也就是5700音分了。再如bB5-34便是6966音分。这是因为C0-C5的音程为6000音分,而C5-bB5为1000音分,计7000音分,减去34音分,,也就是6966音分了。 附带说一句,若将考古上的音高换算成音乐上的音名表示法也是不难的。这儿只要记住两个关键性的音就行了。一个是考古学上的C0就是音乐上的C2(大字二组),另一个是考古学上的C4,就是音乐上的c1(小字一组),因此,考古学上的A4,就是音乐上的a1(小字一组)。此外,6966音分就是bb2 -34。 关于音分及音名同频率的换算就比较麻烦了。例如6966音分,或bB5-34,它的频率该是多少Hz(赫兹)?要进行计算,首先要记住两个资料:一个是考古学上的C0,也就是音乐学上的C2(大字二组)的频率16.3515978313Hz,取约值16.35Hz;此频率的对数便是1.21356019708。另一个资料便是比例常数3986.31371386,此资料乃是1200/lg2。因为一个八度为1200音分,其频率比为2的缘故。如果我们要求出6966音分的频率,可通过以下计算求得: 6966?3986.314+1.21356 = 2.961,然后查反对数,得914.20(Hz)。这914.20Hz就是6966音分的频率。 相反,若知道频率,完全可以运用上述公式的逆运算求得它的音分。例如,已测得考古发掘出的某磬片的频率为586.86Hz,求此音的音分及音名。 解:? 先求出586.86Hz的对数与16.35Hz的对数之差。 lg586.86-lg16.35 = 2.7685345029-1.213560197 = 1.554974312 ? 将1.55497431253986.31371386 = 6196.62。取出近似值6197音分。 由于C4为6000音分,D4为6200音分,故而6197音分为D4-3。 (二)弦上的音位计算 在弦上进行音位计算,其主要目的虽然是为着律学的研究,但是它同样有着实际的用途。最早将弦用于律学计算的是西汉末年的京房(前77-前37)。他为了研究60律而设计了弦准。对于律学研究来说,若要区别三分损益律、纯律、十二平均律三种律制之间的差别,除了借助弦而外,是没有任何一种乐器是能负起此任的。诸君若于此有兴趣,笔者于下方列出这三种律制各音在弦上的百分比。 在列出这三种律制音阶各音在弦上的百分比之前,有4点说明。 1、三分损益律的传统七声音阶,只有变征(#4)而不用清角(4),纯律只有清角而没有变征。为了统一起见,此处根据如今的音乐实际,也改用清角。 2、纯律,实际上乃是在三分损益律的基础上增添了4:3的纯四度、5:4的纯律大三度和6:5的纯律小三度。笔者至今也未曾见到有人介绍纯律的十二律。因此,本文也只能介绍这三种律制的七声音阶在弦上的百分比。 3、三分损益律的首律是黄钟,如今人们通常以C(c1)为首音,更有不少人爱把黄钟正律说成C。实际上我们无法证明古代的黄钟就是C,但却可以把黄钟比拟作C。 4、在同一根弦上进行三种律制的音程比较时,弦的下端为起点0,上端为止点,即全弦长1。 现将三种律制各音在弦上的比例列表于下: 阶名 1 2 3 4 5 6 7 1 三分损益 1.0000 0.8888 0.7901 0.7400 0.6667 0.5926 0.5267 0.5000 纯律 1.0000 0.8888 0.8000 0.7500 0.6667 0.6000 0.5333 0.5000 十二平均律 1.0000 0.8909 0.7937 0.7492 0.6674 0.5946 0.5297 0.5000 至于弦上的音分计算当然并不仅仅是为着三种律制的比较。本世纪四十年代,我国音乐大家杨荫浏先生在进行音律研究时,就是借助了弦准,即在弦上确定一标准音,然后确定所测之音在弦上的按弦点,通过按弦点同弦上的基准点的比例,算出所测之音的音高或音程。例如一根长58公分的弦,音高(空弦音)为d1(293.66Hz),现测得某音与弦上47.65公分处所发之音等高,算出所测之音的高度(频率)。 解:由于频率同弦长成反比,所以所测之音同空弦音的音程,即为这两段弦长的对数差与音分计算比例常数之积。列式如下: (lg58-lg47.65)′ 3986.314 = 0.08537 ′ 3986.314 = 340.31(音分)。 由于d1比c1高大二度,故而d1为5000音分,今再加340.31音分,故而为5340.31音分,其音高为F4+40。运用前面述及的音分同频率换算的方法,可列出以下算式: 5340.31? 3986.314 + 1.2136 = 2.5533 查2.5533的反对数为357.52,由此可知,该音的音高为357.52(Hz)。 关于弦上的频率及音位计算,只能计算其相对音高,不能计算其绝对音高。弦的绝对音高的确定必须凭藉其他能确定绝对音高的乐器。正因为这个缘故,汉代的京房既明确指出“竹声不可以度调”,而在涉及弦准的绝对音高时又不得不牵涉到律管,晋代的杨泉也认定“以管定音,以弦定律”。 何不能确定绝对音高呢?这从弦的频率公式的分析中就可以获得证明。弦的频率公式是: 从弦的频率公式可知:虽然弦的频率(F)与弦长(L)成反比,同弦的张力(T)的平方根成正比,同弦的质量(m)的平方根成正比。作为弦乐器上的弦,尽管弦成可以测量,但是其张力与质量都是无法准确测定的,因此频率(F)也就无法确定。 (三)从频率计算音分 从频率计算音分是比较简单的。它与弦上的音位计算正好为逆运算。若两个频率分别为1362.76Hz与1485.95Hz,求这两个频率之间的音程。可列出以下算式: (lg1485.95lg-1362.76)′ 3986.314 = (3.172 -3.134)′ 3986.314 = 0.038′3986.314=151.48(音分)。 (四)关于板乐器及管乐器的频率 音律既然是乐器的重要属性,那么除了弦乐器而外,还有打击乐器和管乐器。打击乐器如钟磬,属于板振动。板振动的固有频率的计算,乃是凭藉的经验公式,因此除了可以对它测出的频率进行计算而外,目前还无法对它本身的固有频率进行计算。 作为板振动的钟磬,尤其是特殊的板振动的乐器--钟,据说西周就有所谓“立均出度”的“均钟木”。尽管东周出土的钟磬有校音的痕迹,但是所校音高的范围不大。由此可见,自西周始,用这“均钟木”来铸造具有绝对音高的钟磬是完全可信的。但是这“均钟木”究竟是如何“立均出度”的,如今已成了难解之谜。 至于管乐器,常常见到人们述及它们的频率公式或音程公式,看起来管乐器的固有频率似乎是完全可以计算的。实际上管乐器除了可以对它们所奏出的音高进行计算而外,作为乐器的固有频率(频率公式)或音程公式,目前还无法进行计算。以下略述其原因。 首先就管乐器的基频公式来说,其频率应该同声波速度成正比,同气柱的长度成反比。这看上去似乎很简单,但是其真实情况却不是这么简单。原来管乐器不仅有开管乐器和闭管乐器,笔者还发现另有开管与闭管的结合型的管乐器。就开管与闭管来说,以边棱音为激振源的笛类乐器,与簧哨乐器的情形又明显不同。例如笛类乐器中的箫笛,其两端与外界大气相接,因此两端都有管口校正量,作为闭管的我国古代律管和排箫,只有一端与外界大气相接,因此只有一个管口校正量。而就簧哨乐器来说,尽管其吹奏端已含于口中或与唇紧密相接,却仍然有开管与闭管之分。例如中国的筚篥、管子与巴乌,外国的单簧管等都是闭管,中国的唢吶,外国的双簧管、大管、萨克斯管,以及各种号,都是开管。那么簧哨乐器中的开管乐器应该有一个还是两个管口校正量?这恐怕是我们的物理学家们还没有认真考虑过的问题吧? 再就最简单的笛类乐器来说,律管和排箫的情形应该是一样的,二者之间的管端校正量(因为是闭管,应该只有一个管端校正量)是否应该相同?再就箫笛来说,其声学情形更是完全相同的。可是所有制作箫笛的人都知道,确定笛子音孔位置的公式绝对不适宜于确定洞箫的音孔位置。这是什么道理?原来箫和笛的音调不同而导致管长不同,即使管口校正量相同,其音孔位置的比例也必然不同;实际上箫和笛的管口校正量也确实不同,所以确定音孔位置的方法也就必然不同。 欲求管乐器的计算频率(不是实测),必须求得频率计算公式;欲求管乐器的频率计算公式,必须求得管乐器的管口校正量和管乐器中振动着的气柱的声波速度。可是别说各种管乐器的管口校正量各不相同,就是管乐器中的声波速度如今也多是借用了大气中的速度,这显然是未必切合实际的。 基于以上分析,可知有关音律计算方面的问题,无论是弦律还是管律,都有许多有待深入研究的内问题。

Powered by 音乐粉 www.yinyuef.com 备案号:京ICP备2024095045号-19

音乐粉所有资料均为网友制作、提供或从网络收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。 如本站内容有侵犯您的合法权益,请和我们联系,我们将立即改正或删除。